Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Child Health Care ; 53(2): 109-112, 2024.
Article in English | MEDLINE | ID: mdl-38706723
3.
Sci Rep ; 11(1): 999, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441816

ABSTRACT

Fundamentally, river plume dynamics are controlled by the buoyancy due to river effluent and mixing induced by local forcing such as winds and tides. Rarely the influence of far-field internal waves on the river plume dynamics is documented. Our 5-day fix-point measurements and underway acoustic profiling identified hydrodynamic processes on the dispersal pathway of the Pearl River plume. The river plume dispersal was driven by the SW monsoon winds that induced the intrusion of cold water near the bottom. The river effluent occupied the surface water, creating strong stratification and showing on-offshore variability due to tidal fluctuations. However, intermittent disruptions weakened stratification due to wind mixing and perturbations by nonlinear internal waves (NIWs) from the northern South China Sea (NSCS). During events of NIW encounter, significant drawdowns of the river plume up to 20 m occurred. The EOF deciphers and ranks the contributions of abovementioned processes: (1) the stratification/mixing coupled by wind-driven plume water and NIWs disruptions (81.7%); (2) the variation caused by tidal modulation (6.9%); and (3) the cold water intrusion induced by summer monsoon winds (5.1%). Our findings further improve the understanding of the Pearl River plume dynamics influenced by the NIWs from the NSCS.

4.
Sci Rep ; 8(1): 4229, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29523812

ABSTRACT

Globally mud areas on continental shelves are conduits for the dispersal of fluvial-sourced sediment. We address fundamental issues in sediment dynamics focusing on how mud is retained on the seabed on shallow inner shelves and what are the sources of mud. Through a process-based comprehensive study that integrates dynamics, provenance, and sedimentology, here we show that the key mechanism to keep mud on the seabed is the water-column stratification that forms a dynamic barrier in the vertical that restricts the upward mixing of suspended sediment. We studied the 1000 km-long mud belt that extends from the mouth of the Changjiang (Yangtze) River along the coast of Zhejiang and Fujian Provinces of China and ends on the west coast of Taiwan. This mud belt system is dynamically attached to the fluvial sources, of which the Changjiang River is the primary source. Winter is the constructive phase when active deposition takes place of fine-grained sediment carried mainly by the Changjiang plume driven by Zhe-Min Coastal Currents southwestward along the coast.

SELECTION OF CITATIONS
SEARCH DETAIL
...